Skip to main content

Uniform distribution

Uniform Distribution

Probability Density FunctionThe general formula for the probability density function of the uniform distribution isf(x) = 1/(B - A)  for A <= x <= B
where A is the location parameter and (B - A) is the scale parameter. The case where A = 0 and B = 1 is called the standard uniform distribution. The equation for the standard uniform distribution is
f(x) = 1 for 0 <= x <= 1
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.
The following is the plot of the uniform probability density function.
plot of the uniform probability density function
Cumulative Distribution FunctionThe formula for the cumulative distribution function of the uniform distribution isF(x) = x  for 0 <= x <= 1
The following is the plot of the uniform cumulative distribution function.
plot of the uniform cumulative distribution function
Percent Point FunctionThe formula for the percent point function of the uniform distribution isG(p) = p  for 0 <= p <= 1
The following is the plot of the uniform percent point function.
plot of the uniform percent point function
Hazard FunctionThe formula for the hazard function of the uniform distribution ish(x) = 1/(1-x)  for 0 <= x < 1
The following is the plot of the uniform hazard function.
plot of the uniform hazard function
Cumulative Hazard FunctionThe formula for the cumulative hazard function of the uniform distribution isH(x) = -log(1 - x)  for 0 <= x < 1
The following is the plot of the uniform cumulative hazard function.
plot of the uniform cumulative hazard function
Survival FunctionThe uniform survival function can be computed from the uniform cumulative distribution function.The following is the plot of the uniform survival function.
plot of the uniform survival function
Inverse Survival FunctionThe uniform inverse survival function can be computed from the uniform percent point function.The following is the plot of the uniform inverse survival function.
plot of the uniform inverse survival function
Common Statistics
Mean(A + B)/2
Median(A + B)/2
RangeB - A
Standard DeviationSQRT((B-A)**2/12)
Coefficient of Variation(B - A)/(SQRT(3)*(B + A))
Skewness0
Kurtosis9/5
Parameter EstimationThe method of moments estimators for A and B are
    A = XBAR - SQRT(3)*s
    XBAR + SQRT(3)*s
The maximum likelihood estimators are usually given in terms of the parameters aand h where
    A = a - h
    B = a + h
The maximum likelihood estimators for a and h are
    ahat = midrange(Y1, ... ,Yn)
    hhat = 0.5*[RANGE(Y1, ... , Yn)]
This gives the following maximum likelihood estimators for A and B
    Ahat = midrange(Y1, ... ,Yn) - 0.5*[RANGE(Y1, ... , Yn)]
    Bhat = midrange(Y1, ... ,Yn) + 0.5*[RANGE(Y1, ... , Yn)]
CommentsThe uniform distribution defines equal probability over a given range for a continuous distribution. For this reason, it is important as a reference distribution.One of the most important applications of the uniform distribution is in the generation of random numbers. That is, almost all random number generators generate random numbers on the (0,1) interval. For other distributions, some transformation is applied to the uniform random numbers.
SoftwareMost general purpose statistical software programs support at least some of the probability functions for the uniform distribution.

Comments

Popular posts from this blog

Runs Test for Detecting Non-randomness

Runs Test for Detecting Non-randomness Purpose: Detect Non-Randomness The runs test ( Bradley, 1968 ) can be used to decide if a data set is from a random process. A run is defined as a series of increasing values or a series of decreasing values. The number of increasing, or decreasing, values is the length of the run. In a random data set, the probability that the ( I +1)th value is larger or smaller than the I th value follows a binomial distribution , which forms the basis of the runs test. Typical Analysis and Test Statistics The first step in the runs test is to count the number of runs in the data sequence. There are several ways to define runs in the literature, however, in all cases the formulation must produce a dichotomous sequence of values. For example, a series of 20 coin tosses might produce the f...

The most femiliar statisticians

Gertrude Cox :   Gertrude Mary Cox (of Experimental Statistics at North Carolina State University. She was later appointed director of both the Institute of Statistics of 1900 - 1978) was an influential American statistician and founder of the department the Consolidated University of North Carolina and the Statistics Research Division of North Carolina State University. Her most important and influential research dealt with experimental design; she wrote an important book on the subject with W. G. Cochran. In 1949 Cox became the first female elected into the International Statistical Institute and in 1956 she was president of the American Statistical Association. From 1931 to 1933 Cox undertook graduate studies in statistics at the  University of California at Berkeley , then returned to Iowa State College as assistant in the Statistical Laboratory. Here she worked on the  design of experiments . In 1939 she was appointed assistant professor of statisti...

Lognormal distribution

Lognormal Distribution Probability Density Function A variable X is lognormally distributed if Y = LN(X) is normally distributed with "LN" denoting the natural logarithm. The general formula for the  probability density function  of the lognormal distribution is where   is the  shape parameter ,   is the  location parameter  and  m is the  scale parameter . The case where   = 0 and  m  = 1 is called the  standard lognormal distribution . The case where   equals zero is called the 2-parameter lognormal distribution. The equation for the standard lognormal distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the lognormal probability density function for four values of  . There are several commo...