Skip to main content

Exponential distribution


Exponential Distribution

Probability Density FunctionThe general formula for the probability density function of the exponential distribution isf(x) = (1/beta)*EXP(-(x - mu)/beta)  for x >= mu; beta > 0
where mu is the location parameter and beta is the scale parameter(the scale parameter is often referred to as lambda which equals 1/beta). The case where mu = 0 and beta = 1 is called the standard exponential distribution. The equation for the standard exponential distribution is
f(x) = EXP(-x)  for x >= 0
The general form of probability functions can be expressed in terms of the standard distribution. Subsequent formulas in this section are given for the 1-parameter (i.e., with scale parameter) form of the function.
The following is the plot of the exponential probability density function.
 plot of the exponential probability density function
Cumulative Distribution FunctionThe formula for the cumulative distribution function of the exponential distribution isF(x) = 1 - EXP(-x/beta)  for x >= 0; beta > 0
The following is the plot of the exponential cumulative distribution function.
plot of the exponential cumulative distribution
Percent Point FunctionThe formula for the percent point function of the exponential distribution isG(p) = -beta*ln(1-p)
The following is the plot of the exponential percent point function.
plot of the exponential percent point function
Hazard FunctionThe formula for the hazard function of the exponential distribution ish(x) = lambda  for x >= 0
The following is the plot of the exponential hazard function.
plot of the exponential hazard function
Cumulative Hazard FunctionThe formula for the cumulative hazard function of the exponential distribution isH(x) = x/beta  for x >= 0; beta > 0
The following is the plot of the exponential cumulative hazard function.
plot of the exponential cumulative hazard function
Survival FunctionThe formula for the survival function of the exponential distribution isS(x) = EXP(-x/beta)  for x>= 0; beta > 0
The following is the plot of the exponential survival function.
plot of the exponential survival function
Inverse Survival FunctionThe formula for the inverse survival function of the exponential distribution isG(p) = -beta*ln(p)    0 <= p < 1; beta > 0
The following is the plot of the exponential inverse survival function.
plot of the exponential inverse survival function
Common Statistics
Meanbeta
Medianbeta*ln(2)
ModeZero
RangeZero to plus infinity
Standard Deviationbeta
Coefficient of Variation1
Skewness2
Kurtosis9
Parameter EstimationFor the full sample case, the maximum likelihood estimator of the scale parameter is the sample mean. Maximum likelihood estimation for the exponential distribution is discussed in the chapter on reliability (Chapter 8). It is also discussed in chapter 19 of Johnson, Kotz, and Balakrishnan.
CommentsThe exponential distribution is primarily used in reliabilityapplications. The exponential distribution is used to model data with a constant failure rate (indicated by the hazard plot which is simply equal to a constant).
SoftwareMost general purpose statistical software programs support at least some of the probability functions for the exponential distribution

Comments

Popular posts from this blog

Runs Test for Detecting Non-randomness

Runs Test for Detecting Non-randomness Purpose: Detect Non-Randomness The runs test ( Bradley, 1968 ) can be used to decide if a data set is from a random process. A run is defined as a series of increasing values or a series of decreasing values. The number of increasing, or decreasing, values is the length of the run. In a random data set, the probability that the ( I +1)th value is larger or smaller than the I th value follows a binomial distribution , which forms the basis of the runs test. Typical Analysis and Test Statistics The first step in the runs test is to count the number of runs in the data sequence. There are several ways to define runs in the literature, however, in all cases the formulation must produce a dichotomous sequence of values. For example, a series of 20 coin tosses might produce the f...

The most femiliar statisticians

Gertrude Cox :   Gertrude Mary Cox (of Experimental Statistics at North Carolina State University. She was later appointed director of both the Institute of Statistics of 1900 - 1978) was an influential American statistician and founder of the department the Consolidated University of North Carolina and the Statistics Research Division of North Carolina State University. Her most important and influential research dealt with experimental design; she wrote an important book on the subject with W. G. Cochran. In 1949 Cox became the first female elected into the International Statistical Institute and in 1956 she was president of the American Statistical Association. From 1931 to 1933 Cox undertook graduate studies in statistics at the  University of California at Berkeley , then returned to Iowa State College as assistant in the Statistical Laboratory. Here she worked on the  design of experiments . In 1939 she was appointed assistant professor of statisti...

Lognormal distribution

Lognormal Distribution Probability Density Function A variable X is lognormally distributed if Y = LN(X) is normally distributed with "LN" denoting the natural logarithm. The general formula for the  probability density function  of the lognormal distribution is where   is the  shape parameter ,   is the  location parameter  and  m is the  scale parameter . The case where   = 0 and  m  = 1 is called the  standard lognormal distribution . The case where   equals zero is called the 2-parameter lognormal distribution. The equation for the standard lognormal distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the lognormal probability density function for four values of  . There are several commo...