Skip to main content

Histograms


Histograms
Histograms are similar to bar charts apart from the consideration of areas. In a bar chart, all of the bars are the same width and the only thing that matters is the height of the bar. In a histogram, the area is the important thing.

Example: Draw a histogram for the following information.
                             Frequency:
Height (feet):   (Number of pupils)     Relative frequency:
0-2                        0                                0
2-4                        1                                1
4-5                        4                                8
5-6                        8                                16
6-8                        2                                2

(Ignore relative frequency for now). It is difficult to draw a bar chart for this information, because the class divisions for the height are not the same. The height is grouped 0-2, 2-4 etc, but not all of the groups are the same size. For example the 4-5 group is smaller than the 0-2 group.

When drawing a histogram, the y-axis is labelled 'relative frequency' or 'frequency density'. You must work out the relative frequency before you can draw a histogram. To do this, first you must choose a standard width of the groups. Some of the heights are grouped into 2s (0-2, 2-4, 6-8) and some into 1s (4-5, 5-6). Most are 2s, so we shall call the standard width 2. To make the areas match, we must double the values for frequency which have a class division of 1 (since 1 is half of 2). Therefore the figures in the 4-5 and the 5-6 columns must be doubled. If any of the class divisions were 4 (for example if there was a 8-12 group), these figures would be halved. This is because the area of this 'bar' will be twice the standard width of 2 unless we half the frequency.
 

Comments

Popular posts from this blog

Weibull distribution

Weibull Distribution Probability Density Function The formula for the  probability density function  of the general Weibull distribution is where   is the  shape parameter ,   is the  location parameter  and   is the scale parameter . The case where   = 0 and   = 1 is called the  standard Weibull distribution . The case where   = 0 is called the 2-parameter Weibull distribution. The equation for the standard Weibull distribution reduces to Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the Weibull probability density function. Cumulative Distribution Function The formula for the  cumulative distribution function  of the Weibull distribution is The following is the plot of the Weibull cumulative ...

Double exponential distribution

Double Exponential Distribution Probability Density Function The general formula for the  probability density function  of the double exponential distribution is where   is the  location parameter  and   is the  scale parameter . The case where   = 0 and   = 1 is called the  standard double exponential distribution . The equation for the standard double exponential distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the double exponential probability density function. Cumulative Distribution Function The formula for the  cumulative distribution function  of the double exponential distribution is The following is the plot of the double exponential cumulative distribution function. Percent Point Function...

Lognormal distribution

Lognormal Distribution Probability Density Function A variable X is lognormally distributed if Y = LN(X) is normally distributed with "LN" denoting the natural logarithm. The general formula for the  probability density function  of the lognormal distribution is where   is the  shape parameter ,   is the  location parameter  and  m is the  scale parameter . The case where   = 0 and  m  = 1 is called the  standard lognormal distribution . The case where   equals zero is called the 2-parameter lognormal distribution. The equation for the standard lognormal distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the lognormal probability density function for four values of  . There are several commo...