Skip to main content

correlation and its types


  

Definition

Degree and type of relationship between any two or more quantities (variables) in which they vary together over a period; for example, variation in the level of expenditure or savings with variation in the level of income. A positive correlation exists where the high values of one variable are associated with the high values of the other variable(s). A 'negative correlation' means association of high values of one with the low values of the other(s). Correlation can vary from +1 to -1. Values close to +1 indicate a high-degree of positive correlation, and values close to -1 indicate a high degree of negative correlation. Values close to zero indicate poor correlation of either kind, and 0 indicates no correlation at all. While correlation is useful in discovering possible connections between variables, it does not prove or disprove any cause-and-effect (causal) relationships between them. See also regression 

Positive Correlation

Positive correlation occurs when an increase in one variable increases the value in another.
The line corresponding to the scatter plot is an increasing line.
Positive Correlation

Negative Correlation

Negative correlation occurs when an increase in one variable decreases the value of another.
The line corresponding to the scatter plot is a decreasing line.
Negative Correlation

No Correlation

No correlation occurs when there is no linear dependency between the variables.
No Correlation

Perfect Correlation

Perfect correlation occurs when there is a funcional dependency between the variables.
In this case all the points are in a straight line.
Perfect Correlation

Strong Correlation

A correlation is stronger the closer the points are located to one another on the line.
Strong Correlation

Weak Correlation

A correlation is weaker the farther apart the points are located to one another on the line.
Weak Correlation
.

Comments

Popular posts from this blog

Frequency Polygons

Learning Objectives Create and interpret frequency polygons Create and interpret cumulative frequency polygons Create and interpret overlaid frequency polygons Frequency polygons are a graphical device for understanding the shapes of distributions. They serve the same purpose as histograms, but are especially helpful for comparing sets of data. Frequency polygons are also a good choice for displaying cumulative frequency distributions . To create a frequency polygon, start just as for histograms , by choosing a class interval. Then draw an X-axis representing the values of the scores in your data. Mark the middle of each class interval with a tick mark, and label it with the middle value represented by the class. Draw the Y-axis to indicate the frequency of each class. Place a point in the ...

Lognormal distribution

Lognormal Distribution Probability Density Function A variable X is lognormally distributed if Y = LN(X) is normally distributed with "LN" denoting the natural logarithm. The general formula for the  probability density function  of the lognormal distribution is where   is the  shape parameter ,   is the  location parameter  and  m is the  scale parameter . The case where   = 0 and  m  = 1 is called the  standard lognormal distribution . The case where   equals zero is called the 2-parameter lognormal distribution. The equation for the standard lognormal distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the lognormal probability density function for four values of  . There are several commo...

Double exponential distribution

Double Exponential Distribution Probability Density Function The general formula for the  probability density function  of the double exponential distribution is where   is the  location parameter  and   is the  scale parameter . The case where   = 0 and   = 1 is called the  standard double exponential distribution . The equation for the standard double exponential distribution is Since the general form of probability functions can be  expressed in terms of the standard distribution , all subsequent formulas in this section are given for the standard form of the function. The following is the plot of the double exponential probability density function. Cumulative Distribution Function The formula for the  cumulative distribution function  of the double exponential distribution is The following is the plot of the double exponential cumulative distribution function. Percent Point Function...